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Abstract In this paper we introduce the modified time-dependent damped harmonic oscil-
lator. An exact solution of the wave function for both Schrödinger picture and coherent state
representation are given. The linear and quadratic invariants are also discussed and the cor-
responding eigenvalues and eigenfunctions are calculated. The Hamiltonian is transformed
to SU(1,1) Lie algebra and an application to the generalized coherent state is discussed. It
has been shown that when the system is under critical damping case the maximum squeezing
is observed in the first quadrature Fx . However, for the overcritical damping case the maxi-
mum squeezing occurs in the second quadrature Fy . Also it has been shown that the system
for both cases is sensitive to the variation in the coherent state phase.

Keywords Wave function · Constants of the motion · Squeezing phenomenon

1 Introduction

In the present communication we reconsider the problem of time-dependent harmonic os-
cillator which has been extensively studied in the mid of the last century, see for example
[1–12]. The question which may arise why one comes back to study one of the old problem
and try to resurrect it. The answer is not just a matter to reconsider certain problem and
try to recover some of the gaps in it. In fact this particular problem (here we refer to the
time-dependent harmonic oscillator) has opened the door to consider different aspects in
the classical as well as in the quantum mechanics. For instance, the existence of the time-
dependent mass in the harmonic oscillator leads to the appearance of the second harmonic
generation, and consequently the system turned to degenerate parametric amplifier model
[13–15]. Also, the realization of the group symmetry in this system gives us the oppor-
tunity to consider the Lie algebraic treatment of such problem [16–19]. Furthermore, the
observation of the nonclassical phenomena in the laboratory and particularly the squeezing
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phenomenon and its connection to the second harmonic generation encouraged us to go back
to the problem. There is no doubt the appearance of the second harmonic generation would
lead us to think of the nonclassical properties for such system. Therefore, as apart of our
duty in this context is to discuss the squeezing phenomenon, however, from point of view of
the Lie Algebra, SU(1,1) [20–22]. Here we may refer to the previous works for the problem
of quantizing the damped motion of a particle in a quadratic field. The problem is usually
deal with an oscillator with constant mass and stiffness placed in the presence of a dissipa-
tive force F = −γ Ẋ, where γ being constant. In addition, there exists a substantial body
of work concerning the study of a classical, undamped harmonic oscillator with arbitrary
dependence in its parameters, see for example [1–3, 23, 24]. In the present work we aim at
unifying these views in order to provide a treatment of a quantal oscillator in the presence of
a dissipation mechanism, in the most general situation in which the mass is time-dependent.
Our consideration will be extended to include the time-dependent driving force which acts
on the Hamiltonian model, see for example [11, 12, 25, 26]. In what follows we concentrate
on a particular time-dependent mass law which is given by

M(t) = m exp
[
−2

√
ω2t2 + δ2

]
, (1.1)

where the time-dependent mass reflects the modified damped harmonic oscillator [24]. In
the above equation we assume that the mass is decaying with a factor equal to the system
frequency ω (say). This in fact pushed us to add the shifted parameter δ that to avoid the
critical decaying case. The Hamiltonian for a linear oscillator with time-dependent mass
spring constant is given by

Ĥ (t) = P̂ 2

2M(t)
+ 1

2
ω2M(t)Q̂2, (1.2)

where P̂ and Q̂ are the dynamical operators which represent the dimension of momentum
and coordinates, respectively and satisfy the commutation relation [Q̂, P̂ ] = i�. ω is the
frequency of the system and M(t) is a time-dependent mass. In presence of an external
driving force, the Hamiltonian (1.2) can be written thus

Ĥ (t) = P̂ 2

2M(t)
+ 1

2
ω2M(t)Q̂2 + E(t)Q̂, (1.3)

where E(t) is any time-dependent function which usually represents the electric field [27,
28]. In our study we handle the problem from quantum mechanics point of view that to fill
the gap of the previous work, more precisely the nonclassical effect. In the meantime we
extend our interest to include the wave function in both non-stationary number and coherent
states. Moreover, we seek the constants of the motion where we introduce the linear and
the quadratic invariants. Also, as a relationship between the time-dependent system and the
Lie algebra, we introduce the solution for the equations of motion in terms of SU(1,1) Lie
algebra generators. This gives us an advantage to discuss the phenomenon of squeezing in
terms of the Perelomov SU(1,1) coherent state. Therefore the paper is organized as follows:
In Sect. 2 we give the explicit expression of the wave function in Schrödinger picture as well
as in the coherent state representation. Section 3 is devoted to introduce the accurate def-
inition of the creation and annihilation operators from which the Hamiltonian (1.3) can be
diagonalized. In Sect. 4 we introduce the constants of motion (linear and quadratic invari-
ants) and obtain their eigenvalues and the corresponding eigenfunctions. Finally in Sect. 5
we give an application for the present system by discussing the phenomenon of squeezing
from the Perelomov coherent state point of view. Our conclusion is given in Sect. 6.
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2 The Wave Function

As we have stated before one of our task is to calculate the wave function in the Schrödinger
picture and to calculate the corresponding coherent state. For this reason we devote the
present section to obtain the exact expression of the wave function in the number state and
in the coherent state.

2.1 Schrödinger Picture

To find the wave function in the number state representation we make our starting point
the canonical transformation, Q̂ = √

m/M(t)q̂ and P̂ = √
M(t)/mp̂, with the properties

[Q̂, P̂ ] = [q̂, p̂] = i�. This means that we have to rewrite the Hamiltonian (1.3) in the form

Ĥ (t) = p̂2

2m
+ 1

2
mω2q̂2 + �(t)

2

(
p̂q̂ + q̂p̂

) + Ē(t)q̂, (2.1)

where �(t) = d(ln
√

M(t))/dt and Ē(t) = E(t) exp[−√
ω2t2 + δ2]. The time-dependent

Schrödinger equation is given by

Ĥ (t)ψ(q, t) = i�
∂

∂t
ψ(q, t). (2.2)

Now if we substitute (2.1) into (2.2) then the wave function takes the form

∂2ψ

∂q2
− m2ω2

�2
q2ψ + im�(t)

�

(
2q

∂ψ

∂q
+ ψ

)
− 2m

�2
Ē(t)qψ = −2im

�

∂ψ

∂t
. (2.3)

Furthermore, if one makes the substitution

q̂ = x + ζ(t), ψ(q, t) ≡ η(x, t), dψ = dη, (2.4)

where the function ζ(t) is suitably chosen, then

∂η

∂x
= ∂ψ

∂q
,

∂ψ

∂t
= ∂η

∂t
− ζ̇

∂η

∂x
,

∂2ψ

∂q2
= ∂2η

∂x2
(2.5)

and consequently (2.3) reduces to the form

∂2η

∂x2
− m

�2

[
2Ē (x + ζ ) + mω2 (x + ζ )2

]
η + im�(t)

�

(
2 (x + ζ )

∂

∂x
+ 1

)
η − 2im

�
ζ̇

∂η

∂x

= −2im

�

∂η

∂t
. (2.6)

Moreover, we use the transformation

η(x, t) = 
(y, t), y = u(t)x and u(t) = 1

|R(t)| , (2.7)

where we define R(t) = (λ coshφ(t) − i sinhφ(t)), φ(t) = 1
2 tanh−1( �(t)

ω
) and λ =√

(δ − 1
2 )/(δ + 1

2 ).
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In this case (2.6) can be written as follows

∂2


∂y2
− m

�2u4

(
2uĒ (y + uζ) + mω2 (y + uζ)2

)



+ 2im

�u

(
�(t)

u
(y + uζ) − ζ̇ + u̇

u2
y

)
∂


∂y

= − im

�u2

(
2
∂


∂t
+ �(t)


)
. (2.8)

Now we seek a separation of the form


 = Y (y)T (t) exp

[
− im

2�

(
V (t)y2 + 2W(t)y

)]
, (2.9)

where V (t) and W(t) are time-dependent functions given by

V (t) = �(t)u + u̇

u3
, and W(t) = �(t)ζ − ζ̇

u(t)
. (2.10)

Substituting (2.9) and (2.10) into (2.8) and after some calculations we can simplify the
result to take the form

1

Y

d2Y

dy2
+ m2ω2

�2

(
V̇ (t)

ω2u2
+ V 2(t)

ω2
− 1

u4

)
y2

− 2m

�2u

(
Ē + mω2ζ

u2
− mẆ

u
− muV (t)W(t)

)
y

= −2im

�u2

(
1

T

dT

dt
+ �(t) − V (t)u2

2

)

+ m2

�2u2

(
2
Ē

m
ζ + ω2ζ 2 − u2W 2(t)

)
. (2.11)

To complete the separation of the variable we choose ζ(t) to make the coefficient of y in
(2.11) vanishes. Simple calculations lead us to have the driven linear equation for ζ(t), thus

ζ̈ + (
ω2 − �̇(t) − �2(t)

)
ζ = − Ē

m
. (2.12)

Using the fact that

V̇ + (
V 2 + λ2ω2

)
u2 = ω2

u2
, (2.13)

the wave function (2.11) separates to

1

Y

d2Y

dy2
− m2ω2λ2

�2
y2 = −2im

�
|R(t)|2

(
1

T

dT

dt
− 1

2u

du

dt

)

+ m2

�2
|R(t)|2

(
2
Ē

m
ζ + ω2ζ 2 − (

�(t)ζ − ζ̇
)2

)
. (2.14)
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After a straightforward calculation we find, with K a constant of separation

d2Y

dy2
+

(
K − m2ω2λ2

�2
y2

)
Y = 0, (2.15)

1

T

dT

dt
− 1

2u

du

dt
+

[
i�K

2m |R(t)|2 + im

2�

(
2E

m
ζ + ω2ζ 2 − W 2(t)

|R(t)|2
)]

= 0. (2.16)

Equation (2.15) is ordinary differential equation for the harmonic oscillator and requires
the quantization

K = mωλ

�
(2n + 1) n = 0,1,2, . . . (2.17)

Therefore (2.9) may be written as


(y, t) = N√|R(t)|Hn

[√
mωλ

�
y

]
exp

[
−mωλ

2�
y2

]

× exp

[
− im

2�

(
V (t)y2 + 2W(t)y

)]

× exp

[
−iωλ

(
n + 1

2

)∫ t

0
|R(t)|−2 dt + I (t)

]
, (2.18)

where N is the normalization constant and

I (t) =
∫ t

0

{
ζ(t)

[
2Ē

m
+ ω2ζ(t)

]
− W 2(t)

|R(t)|2
}
dt. (2.19)

Thus the wave function in its final form is

ψn(q, t) =
(

mωλ

π�|R(t)|2
) 1

4

(n!)− 1
2 2− n

2 Hn

(√
mωλ

�|R(t)|2 (q − ζ(t))

)

× exp

[
− m

2�

(
(ωλ + iV (t))

|R(t)|2 (q − ζ(t))2 + 2iW(t)

|R(t)| (q − ζ(t))

)]

× exp

[
−iω

(
n + 1

2

)(
β sinh−1

(
ωt

δ

)
− tan−1

(
tanhφ

λ

))
− im

2�
I (t)

]
, (2.20)

where β =
√

δ2 − 1
4 . It should be noted that the solution we have obtained is only valid

within the interval δε(−∞,− 1
2 ) ∪ ( 1

2 ,∞) where the under critical damping case occurred.

2.2 The coherent state representation

To obtain the wave function in the coherent state representation we have to use the effect of
the Glauber displacement operator on the vacuum state D̂(α)|0〉 = exp(Â†α − Âα∗)|0〉, viz

|α〉 = exp

(
−1

2
|α|2

) ∞∑
n=0

αn

√
n! |n〉. (2.21)
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Therefore, if one uses (2.20) and (2.21) thus we obtain

ψα(q, t) =
(

mωλ

π�|R(t)|2
) 1

4

exp

(√
2mωλ

�

(q − ζ(t))

|R(t)| α(t)

)

× exp

[
− m

2�

(
(ωλ + iV (t))

|R(t)|2 (q − ζ(t))2 + 2iW(t)

|R(t)| (q − ζ(t))

)]

× exp

[
−1

2

(
α2(t) + |α|2 + im

�
I (t)

)]
, (2.22)

where we have dropped the zero point energy and defined

α(t) = α(0) exp

[
−iω

(
β sinh−1

(
ωt

δ

)
− tan−1

(
tanhφ

λ

))]
. (2.23)

As a special case if we take the driving force Ē = 0, then (2.22) reduces to

ψα(q, t) =
(

mωλ

π� |R(t)|2
) 1

4

exp

[
− mω

2�|R(t)|2
(

λ + i

2
(λ2 + 1) sinh 2φ

)
q2

]

× exp

(
−1

2
|α|2

) ∞∑
n=0

αn(t)

n! 2−n/2Hn

(√
mωλ

�|R(t)|2 q

)

× exp

[
in tan−1

(
tanhφ

λ

)]
, (2.24)

where the parameter α(t) in this case becomes

α(t) = α(0) exp

[
−iω

(
β sinh−1

(
ωt

δ

))]
. (2.25)

In what follows we shall turn our attention to diagonalize the Hamiltonian model (2.1)
using the result obtained in this section.

3 The Diagonalized Hamiltonian

In order to diagonalize the Hamiltonian model (2.1) we have to introduce a new definition
of the boson operator. To achieve this goal one has to differentiate the wave function in
the coherent state equation (2.22) or (2.24) in absence of the driving force. In presence of
the driving force case and after rearrangement of the definition of the coherent state, the
annihilation operator takes the form

Â(t) (2mωλ�)
1
2 = [

mω
(
J ∗(t)q̂(t) + iK(t)

) + iR(t)p̂(t)
]
, (3.1)

where Â(t) with its adjoint satisfy the commutation relation [Â(t), Â†(t)] = 1. In (3.1) we
have used the abbreviations

K(t) = 1

mω

∫ t

0
Ē(τ )R(τ) exp [i (θ(τ ) − θ(t))]dτ,
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J (t) = (coshφ(t) − iλ sinhφ(t)) , and θ(t) = β sinh−1

(
ωt

δ

)
. (3.2)

We now substitute the operator Â(t) with its complex conjugate into the Hamiltonian
(2.1), thus we have

Ĥ (t)

�
= �

2λ

(
λ2 + 1

)(
Â†(t)Â(t) + 1

2

)
+ �

4λ

(
λ2 − 1

)(
Â2(t) + Â†2(t)

)

+ i�

2λ

√
mω

2λ�

[{
(1 + λ2)K∗(t) + (1 − λ2)K(t)

}
Â(t)

− {
(1 − λ2)K∗(t) + (1 + λ2)K(t)

}
Â†(t)

]

+ mω�

8�λ2

[(
K(t) + K∗(t)

)2 + λ2
(

K(t) − K∗(t)
)2

]

+ Ē(t)

[
(2m�ωλ)− 1

2

(
Â(t)R∗ + Â†(t)R

)

− i

2λ�

(
K(t)R∗ − K∗(t)R

)]
. (3.3)

Since the operator (3.1) is explicitly time-dependent, therefore we have to add the first
derivative of the generating function F2(Â(t), Â†(t), t) (say) into the Hamiltonian (3.3). In
this case and after straightforward calculation the first derivative of the generating function
takes the form

∂F2

∂t
= φ̇(t)

(1 − λ2)

2λ

(
Â†(t)Â(t) + 1

2

)
− φ̇(t)

(1 + λ2)

4λ

(
Â2(t) + Â†2(t)

)

− i

2λ

√
mω

2λ�

[
φ̇(t)K∗(t)(1 + λ2) + φ̇(t)K(t)(1 − λ2) − 2iλK̇(t)

]
Â†(t)

+ i

2λ

√
mω

2λ�

[
φ̇(t)K(t)(1 + λ2) + φ̇(t)K∗(t)(1 − λ2) + 2iλK̇∗(t)

]
Â(t). (3.4)

From (3.3) and (3.4) we can obtain the diagonalized Hamiltonian thus

Ĥ(t)

�
=

(
β�(t)

δ

)(
Â†(t)Â(t) + 1

2

)

+ i

√
mω

2λ�

[(
β�(t)

δ

)(
K∗(t)Â(t) − K(t)Â†(t)

)]
,

+mω�

8�λ2

[(
K(t) + K∗(t)

)2 + λ2
(

K(t) − K∗(t)
)2

]

− i

2λ�
Ē(t)

(
K(t)R∗ − K∗(t)R

)
. (3.5)

Here we may point out that if one wishes to solve the equations of motion in the Heisen-
berg picture. Then the terms free from any dynamical operators in the above equation can
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be dropped without loss of generality. In absence of the external force Ē(t), (3.5) reduces to

Ĥ(t)/� =
(

β�(t)

δ

)(
Â†(t)Â(t) + 1

2

)
(3.6)

which represents the usual simple harmonic motion with time-dependent frequency
β�(t)/δ.

4 Constants of the Motion

The use of explicitly time-dependent invariants in applications of quantum theory has re-
ceived little attention. Presumably, the reason for this lack of attention has been the dearth
of examples in which the use of such quantities was both possible and fruitful. However, a
class of exact invariants for time-dependent harmonic oscillators, both classical and quan-
tum, was reported [29–31]. The simplicity of the rules for constructing these invariants and
the instructive relation of the invariant theory have stimulated an interest in using the invari-
ants for solving some explicit quantum-mechanical problems. In what follows we introduce
the constants of motion for the Hamiltonian (2.1) in absence of the driving force [32–35].
Consequently we calculate the eigenvalues and corresponding eigenfunctions of these in-
variants [36, 37].

4.1 Linear Invariants

We begin by seeking a first-degree invariant [32, 33]

Î (t) = ν(t)q̂ + μ(t)p̂. (4.1)

We require

dÎ

dt
= ∂Î

∂t
+ 1

i�

[
Î , Ĥ

]
= 0, (4.2)

where Ĥ is the Hamiltonian given by (2.1). From which we see ν(t) and μ(t) must satisfy

dμ

dt
= μ�(t) − 1

m
ν,

dν

dt
= mω2μ − ν�(t). (4.3)

In order to find the solution for these equations we eliminate either μ(t) or ν(t) to have
uncoupled second order differential equation, thus

d2ν

dt2
+ (ω2 + �̇(t) − �2(t))ν = 0,

d2μ

dt2
+ (ω2 − �2 − �̇)μ = 0, (4.4)

where over dot indicates to the first derivative. The exact solution for these equations are

ν(t) = ν(0)f1(t) + mωμ(0)g1(t), μ(t) = μ(0)f2(t) + 1

mω
ν(0)g2(t), (4.5)

where fi(t) and gi(t), i = 1,2 are given by

f1(t) = (cos θ(t) coshφ(t) − λ sin θ(t) sinhφ(t)) ,
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g1(t) =
(

cos θ(t) sinhφ(t) + 1

λ
sin θ(t) coshφ(t)

)
,

(4.6)
f2(t) =

(
cos θ(t) coshφ(t) + 1

λ
sin θ(t) sinhφ(t)

)
,

g2(t) = (cos θ(t) sinhφ(t) − λ sin θ(t) coshφ(t)) .

In this case we are able to construct two class of invariants

Î (p) = m(μ� − μ̇)q̂ + μp̂, and Î (q)(t) = 1

mω2
(ν̇ + ν�(t))p̂ + νq̂. (4.7)

In the following subsection we turn our attention to construct another different classes of
the quadratic invariants.

4.2 Quadratic Invariants

In a similar way we seek a second-degree invariant

Î (t) = α1(t)q̂
2 + β1(t)p̂

2 + γ1(t)q̂p̂. (4.8)

From (2.1) and (4.8) together with (4.2) we have

dα1

dt
+ 2α1� = γ1mω2,

dβ1

dt
− 2�β1 = − 1

m
γ1,

dγ1

dt
= −2α1

m
+ 2mω2β1. (4.9)

Now if we use the fact that β1α1 = γ 2
1 /4 + C0 where C0 is a constant and set α1 = σ 2,

then after simple algebra we obtain the nonlinear differential equation

σ̈ + (ω2 − �2(t) + �̇(t))σ = m2ω4

σ 3
C0, (4.10)

which is of the Pinney equation form with solution

σ = (ax2
1 + bx2

2 + 2cx1x2)
1
2 , (4.11)

where x1(t) and x2(t) are linearly independent solutions of the homogeneous equation

ẍ + (ω2 + �̇(t) − �2(t))x = 0. (4.12)

The quantity a, b, and c are arbitrary constants subject to the condition ab − c2 =
(1/w1)

2, where w1 is the Wronskian of the solutions x1 and x2 such that

w1 = x1ẋ2 − ẋ1x2. (4.13)

The first class of the quadratic invariant may therefore be expressed in the form

Î (q)(t) =
[
σ q̂ + 1

mω2◦
(σ̇ + σ�(t))p̂

]2

+ C0

σ 2
p̂2. (4.14)

Similar procedure leads to the second family of invariants. In this case if we write β1 = ρ2

and eliminating α1 from (4.9), this gives us the Pinney equation

ρ̈ + (ω2 − �̇(t) − �2(t))ρ = C1

m2ρ3
, (4.15)
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and consequently the second class of the invariant can be expressed in the form

Î (p)(t) = C1

ρ2
q̂2 + [

ρp̂ + m(ρ�(t) − ρ̇)q̂
]2

. (4.16)

4.2.1 The Eigenfunctions of the Invariants

We now turn our attention to find the eigenfunctions and the corresponding eigenvalues of
the operator Î (t), however, we start with its eigenstates [36, 37]. The eigenstates of the
invariant operator Î (t) may be found by an operator technique that is completely analogous
to the method introduced by Dirac for diagonalizing the Hamiltonian. In this case we define
time-dependent canonical lowering and raising operators B̂ and B̂† by the relations

B̂ = (2�

√
C0)

− 1
2

[(√
C0

σ
− i

mω2
(σ̇ + σ�(t))

)
p̂ − iσ q̂

]
,

B̂† = (2�

√
C0)

− 1
2

[(√
C0

σ
+ i

mω2
(σ̇ + σ�(t))

)
p̂ + iσ q̂

]
.

(4.17)

These operators satisfy the canonical commutation rule [B̂(t), B̂†(t)] = 1. So that the
operator B̂†B̂ is a number operator with non-negative integer eigenvalues. The invariant
operator given by (4.14) can be written in terms of the operators B̂(t) and B̂†(t) as

Î (q) = 2�

√
C0

(
B̂†(t)B̂(t) + 1

2

)
, (4.18)

and its eigenstates can be obtained from the coherent state exp(βB̂† −β∗B̂)|0〉 = |β〉 which
has the property B̂(t)|β〉 = β(t)|β〉, where β is a complex parameter. Similarly, we can
define another pair of lowering and raising operators D̂ and D̂† corresponding to the second
constant of the motion Î (p) such that

D̂ = (2�

√
C1)

− 1
2

[(√
C1

ρ
+ im(ρ�(t) − ρ̇)

)
q̂ + iρp̂)

]
,

D̂† = (2�

√
C1)

− 1
2

[(√
C1

ρ
− im(ρ�(t) − ρ̇)

)
q̂ − iρp̂)

]
.

(4.19)

Since these operators satisfy the relation [D̂(t), D̂†(t)] = 1, therefore the invariant oper-
ator in this case becomes

Î (p) = 2�

√
C1

(
D̂†(t)D̂(t) + 1

2

)
, (4.20)

and the eigenstates can also be obtained from the coherent state exp(γ D̂† − γ ∗D̂)|0〉 = |γ 〉,
where γ is complex parameter. To find the eigenfunctions and the corresponding eigenvalue
for the constants of the motion Î (q) and Î (p) we have to employ the lowering operators B̂

and D̂. In this case the wave function in the number state corresponding to the operator B̂

in terms of the momentum is given by

�s(p, t) =
( √

C0

π�σ 2

) 1
4 2−s/2

√
s! Hs

(√√
C0

�σ 2
p

)
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×
(

− 1

2�

[√
C0

σ 2
− 1

mω2

(
�(t) + d lnσ

dt

)]
p2

)
, (4.21)

where Hs(.) stands for the Hermite polynomial. Alternatively, the wave function correspond-
ing to the coherent state |β〉 can be written thus

�β(p, t) =
( √

C0

π�σ 2

) 1
4

exp

(
−1

2
(|β|2 + β2(t))

)

× exp

(
− 1

2�

[√
C0

σ 2
− 1

mω2

(
�(t) + d lnσ

dt

)]
p2 + β(t)

√
2
√

C0

�σ 2
p

)
. (4.22)

For the second constant of motion the wave function in Schrödinger picture can be written
in terms of the coordinate as follows

�r(q, t) =
( √

C1

�πρ2

) 1
4

2− n
2

1√
r!Hr

(√√
C1

�ρ2
q

)

× exp

(
− 1

2�

[√
C1

ρ2
+ im

(
�̃ − d lnρ

dt

)]
q2

)
, (4.23)

and the wave function corresponding to the coherent state |γ 〉 is of the form

�γ (q, t) =
( √

C1

�πρ2

) 1
4

exp

(
−1

2

(|γ |2 + γ 2(t)
))

× exp

(
− 1

2�

[√
C1

ρ2
+ im

(
�̃ − d lnρ

dt

)]
q2 + γ (t)

√
2
√

C1

�ρ2
q

)
. (4.24)

It should be noted that the above results can be used to calculate the Green’s function and
also to consider the remote past as well as the remote future. However, this is not the aim of
the present paper. In the next section we discuss the nonclassical properties for the present
model from SU(1,1) Casimir operators point of view.

5 Application of SU(1,1) Casimir Operator

It is well known that Lie algebra was used by many researchers to investigate the nonclassi-
cal properties of light in quantum-optical systems. They have considered the squeezed states
of photons in terms of SU(1,1) and SU(2) Lie algebras and the coherent states associated
with these algebras, see for example [38–41]. The squeezed vacuum state is a special case
of the Perelomov SU(1,1) coherent state [42, 43], whereas the atomic coherent state (or the
Bloch state) is associated with SU(2) Lie algebra [44, 45]. The linear dissipative processes
in quantum optical systems can be also studied with SU(1,1) Lie algebra in the framework
of the Liouville space formulation [46, 47]. Furthermore, beam splitters [48–50] interfer-
ometers [51], and linear directional couplers [52, 53] are successfully described by SU(2)

Lie algebra. In these studies the Baker-Campbell-Hausdorff formulas are useful, where in
many cases the quantities to be calculated are exponential functions of the generators of the
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Lie algebras. Since the main purpose of the present section is to discuss the nonclassical
properties of the present system from Lie algebra point of view, we are therefore begin by
introducing operators K± and Kz, which satisfy the commutation relations:

[
K−,K+

] = 2σ̃Kz,
[
Kz,K±

] = ±K±, (5.1)

where σ̃ = ±1. When σ̃ = 1,K+,Kz, and K− become the generators of the SU(1,1) Lie al-
gebra, and when σ̃ = −1,K+,Kz, and K− become the generators of the SU(2) Lie algebra.
The Casimir operator is given by

K2 = K2
z − σ̃

1
2 (K+K− + K−K+), (5.2)

which satisfies
[
K2,K±

] = [
K2,Kz

] = 0. (5.3)

In what follows we consider the discrete representation of the SU(1,1) Lie algebra and
use the state vectors that satisfy

K2|m̄; k〉 = k(k − 1)|m̄; k〉, Kz|m̄; k〉 = (m̄ + k)|m̄; k〉,
K+|m̄; k〉 = [(m̄ + 1) (m̄ + 2k)]

1
2 |m̄ + 1; k〉, (5.4)

K−|m̄; k〉 = [m̄ (m̄ + 2k − 1)]
1
2 |m̄ − 1; k〉,

where K−|0; m̄〉 = 0. Here, k is the Bargmann index and m̄ is any nonnegative integer. We
would like to point out that the Bargmann index k is either 1

4 or 3
4 where in k = 1

4 the basis
for the irreducible unitary representation space is a set of states with an even boson number,
and for k = 3

4 the basis is a set of states with an odd boson number.

5.1 Casimir Operator and Nonclassical Properties

We now employ the Casimir operator to describe the Hamiltonian equation (2.1) in absence
of the driving force. To achieve our goal we substitute the operator â = (2mω�)− 1

2 (mωq +
ip) with its complex conjugate into the Hamiltonian model, where a and a† are boson anni-
hilation and creation operators satisfy the commutation relation [a, a†] = 1. In this case we
have

Ĥ

�
= ω

(
â†â + 1

2

)
− i�(t)

2

(
â2 − â†2

)
. (5.5)

Now let us use the SU(1,1) Lie algebra generators to describe the boson annihilation and
creation operators. For a single mode bosonic representation the generators K̂+, K̂−, and K̂z

are expressed as

K̂+ = 1

2

(
â†

)2
, K̂− = 1

2
â2, K̂z = 1

2

(
â†â + 1

2

)
. (5.6)

Therefore the Hamiltonian given by (5.5) takes the form

Ĥ /� = 2ω◦K̂z − i�(t)(K̂− − K̂+). (5.7)
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Since we are concern with the nonclassical properties, more precisely with the squeezing
phenomenon. Therefore it will be more convenient for us to use the generators K̂x, K̂y and
K̂z, where K̂x = 1

2 (K̂+ + K̂−) and K̂y = 1
2i

(K̂+ − K̂−) which satisfy the commutation rules

[
K̂x, K̂y

]
= −iK̂z,

[
K̂y, K̂z

]
= iK̂x,

[
K̂z, K̂x

]
= iK̂y. (5.8)

Then the equations of motion in the Heisenberg picture are

dK̂x

dt
= −2ωK̂y + 2�(t)K̂z,

dK̂y

dt
= 2ωK̂x,

dK̂z

dt
= 2�(t)K̂x. (5.9)

After some manipulations the evolution of the operators{K̂x, K̂y, K̂z} can be written thus

⎛
⎝

K̂x (t)

K̂y (t)

K̂z (t)

⎞
⎠ =

⎛
⎝

f1 (t) −f2 (t) −f3 (t)

g1 (t) g2 (t) g3 (t)

h1 (t) h2 (t) h3 (t)

⎞
⎠

⎛
⎝

K̂x (0)

K̂y (0)

K̂z (0)

⎞
⎠ , (5.10)

where

f1 (t) =
(

cos 2θ(t) − 1

2β2
sin2 θ(t)

)
,

f2 (t) = δ

β
sin 2θ (t) , f3 (t) = δ

β2
sin2 θ (t) ,

g1 (t) = δ

β2

(
β sin 2θ (t) cosh 2φ (t) + sin2 θ (t) sinh 2φ (t)

)
,

g2 (t) =
(

cos 2θ (t) cosh 2φ (t) + 1

2β
sin 2θ (t) sinh 2φ (t)

)
,

(5.11)

g3 (t) =
(

1

2β
sin 2θ (t) cosh 2φ (t) +

[
1 + sin2 θ (t)

2β2

]
sinh 2φ (t)

)
,

h1 (t) = δ

β2

(
β sin 2θ (t) sinh 2φ (t) + sin2 θ (t) cosh 2φ (t)

)
,

h2 (t) =
(

cos 2θ (t) sinh 2φ (t) + 1

2β
sin 2θ (t) cosh 2φ (t)

)
,

h3 (t) =
(

1

2β
sin 2θ (t) sinh 2φ (t) +

[
1 + sin2 θ (t)

2β2

]
cosh 2φ (t)

)
.

The time-dependent arguments φ(t) and θ(t) are given by (2.7) and (3.2), respectively.

5.1.1 Squeezing Phenomenon

Having obtained the time-dependent dynamical operators K̂x , K̂y and K̂z, we are therefore
in position to discuss the phenomenon of squeezing. The associated Heisenberg uncertainty
relation regarding these operators is given by

〈(�K̂x)
2〉〈(�K̂y)

2〉 � 1

4

∣∣∣〈K̂z〉
∣∣∣
2

(5.12)



2770 Int J Theor Phys (2009) 48: 2757–2776

where 〈(�K̂j )
2〉 = 〈K̂2

j 〉 − 〈K̂j 〉2.

To measure squeezing, we define the functions

Fj = 〈(� K̂j )
2〉 − 1

2

∣∣∣〈K̂z〉
∣∣∣ , j = x, y. (5.13)

Squeezing (reduction) in the fluctuation of K̂x or K̂y components occurs if Fx < 0
or Fy < 0, respectively, and the maximum squeezing is reached when 〈(� K̂x)

2〉 = 0 or
〈(� K̂y)

2〉 = 0. We now proceed by considering one type of SU(1,1) states, namely the
Perelomov SU(1,1) coherent state (PCS). The PCS is defined as

|ξ1; k〉 = (1 − |ξ1|2)k

∞∑
m̄=0

√
�̃(m̄ + 2k)

m̄!�̃(2k)
ξ m̄

1 |m̄; k〉, (5.14)

where

ξ1 = tanh

(
r

2

)
exp(−iϕ), |ξ1| ∈ (0,1), r ∈ (−∞,∞), ϕ ∈ (0,2π) (5.15)

and �̃ stands for the gamma function and k is the Bargmann index (where k(k − 1) is the
eigenvalue of the Casimir operator). For k = 1

4 and 3
4 , the PCS is the even and the odd parity

coherent state, respectively.

5.1.2 Evolution of the Squeezing in the PCS

There is no doubt PCS is special type of squeezed vacuum state [54], which is essentially
equivalent to the two-photon coherent state and processes most of the properties of the or-
dinary coherent states, such as a completeness relation and a reproducing kernel [55]. Also,
the PCS can be realized in the framework of the degenerate and nondegenerate parametric
amplifier [16–18]. The required quantities for discussing the behavior of Fx(.) or Fy(.) are
given by

〈(�Kx(t))
2〉 = k

2

[(
f
2
3(t) + e2iϕ

f
2
+(t) + e−2iϕ

f
2
−(t)

)
sinh2 r

]

+ kf+(t)f−(t)
(
1 + cosh2 r

) − k

2

(
eiϕ

f+(t) + e−iϕ
f−(t)

)
f3(t) sinh 2r,

〈(�Ky(t))
2〉 = k

2

[(
g

2
3(t) + e2iϕ

g
2
−(t) + e−2iϕ

g
2
+(t)

)
sinh2 r

]
(5.16)

+ kg+(t)g−(t)
(
1 + cosh2 r

) + k

2

(
eiϕ

g−(t) + e−iϕ
g+(t)

)
g3(t) sinh 2r,

〈Kz(t)〉 = k
[
eiϕ

h− (t) + e−iϕ
h+ (t)

]
sinh r + kh3 (t) cosh r,

where

f±(t) = 1

2
[f1(t) ± if2(t)] , g±(t) = 1

2
[g1(t) ± ig2(t)] ,

h±(t) = 1

2
[h1(t) ± ih2(t)] .

(5.17)
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Fig. 1 Fx against r with (a) ϕ = π
3 and (b) ϕ = π

4

From (5.16) it is evident that the quadrature variances 〈(�Kj(t))
2〉, j = x, y as well

as 〈Kz(t)〉 are always depend on the Bargmann index k. However, this does not affect the
phenomenon of squeezing.

At t = 0, (5.12), (5.13) and (5.16) lead to the following expressions

Fx(r,ϕ, t = 0) = 2k sinh2

(
r

2

)[
cos2 ϕ cosh2

(
r

2

)
− 1

2

]
,

Fy(r, ϕ, t = 0) = 2k sinh2

(
r

2

)[
sin2 ϕ cosh2

(
r

2

)
− 1

2

]
.

(5.18)

Therefore the condition for squeezing in the K̂x or K̂y component is Fx < 0 or Fy < 0,

1 + cos2 ϕ sinh2 r < cosh r, or 1 + sin2 ϕ sinh2 r < cosh r, (5.19)

respectively.
We now discuss the behavior of the functions Fx and Fy for t = 0 at fixed value of

the phase ϕ, such that ϕ = π/3. In this case we can observe the squeezing is occurred
in the quadrature Fx and absence from Fy provided we consider the squeeze parameter
r vary between 0 and 2. However, the phenomenon of squeezing disappeared from both
quadratures at ϕ = π/4. This means that the phase ϕ plays the crucial role to control the
squeezing in each quadrature, see Figs. 1a, b and 2a, b. It is also clear from (5.19) that for
ϕ = 0 there is no squeezing in the quadrature Fx but it occurs in the quadrature Fy and vice
versa. For ϕ = π/2 the squeezing occurs in the quadrature Fx and absence from the second
quadrature Fy. We can also examine the case in which ϕ = π/6 where the phenomenon
of squeezing can be seen in the quadrature Fy not in the quadrature Fx . This can be easily
deduced from (5.18).

Now we turn our attention to consider the case in which t > 0, this means that the fluctu-
ations in the system will take place. For this reason we have plotted some figures to display
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Fig. 2 Fy against r with (a) ϕ = π
6 and (b) ϕ = π

4

this behavior for fixed value of the squeeze parameter r = 1 and ω = 0.5. There are two
different cases we consider: the first case when we set δ = 50, corresponding to the un-
der critical damping case. The second case when we take δ = 0.25, corresponding to the
overcritical damping case. Our study will concentrate on the variation of the phase para-
meter ϕ where we discuss the cases in which ϕ = π/4,π/3,π/2 and 3π/4. In Fig. 3a we
have plotted the quadrature variances Fx (dash line ) and Fy (solid line) against the time for
ϕ = π/4 assuming that the system is under critical damping. In this case both quadratures
shown regular fluctuations for all period of the time and the phenomenon of squeezing is
observed in both quadratures Fx and Fy. Also we realized that the squeezing starts in the
first quadrature after onset of the interaction. This is in addition to an exchange between
both quadratures where several points of the intersection between them can be seen. Further
the maximum value of squeezing is occurred in the first quadrature Fx around ∼ −0.35 at
the time t ∼ 10.3. Similar behavior can be reported when we consider the case in which
ϕ = π/3, where the squeezing occurs in the first quadrature Fx faster than that the previ-
ous case. However, the second quadrature starts to show squeezing after a short period of the
time compare with case ϕ = π/4, see Fig. 3b. It is interesting to point out that as we increase
the value of the phase ϕ, the patterns of each quadrature is shifted and the maximum value
of squeezing occurs faster. This is clearly seen for the case in which ϕ = π/2 and 3π/4, see
Fig. 3c, d. The difference between these two cases is that: for ϕ = π/2, the phenomenon
of squeezing is firstly observed in the quadrature Fx after onset of the interaction. This is
followed with a period of an increase in the function corresponding to decreasing in the
second quadrature Fy. However, for ϕ = 3π/4 the squeezing starts in the second quadrature
Fy and the observation of an exchange between the two quadratures can also be reported.
It should be noted that for all the cases the maximum squeezing always occurs in the first
quadrature Fx round the value ∼ −0.35, however, there is a time difference between each
case. For example when we consider the case in which ϕ = π/3 the maximum squeezing
occurs at the time t ∼ 10 and for ϕ = π/2 it occurs at t = 9.5, while for ϕ = 3π/4 the time
is t ∼ 8.6. This means that an increase in the value of the phase angle leads the squeezing
faster to reach its maximum. We now turn our attention to consider the overcritical case in
which δε(− 1

2 , 1
2 ) − {0}. To do so we have plotted several figures to display this behavior
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Fig. 3 Fx (dash line) and Fy (solid line) against the time t with δ = 50, ω = 0.5 r = 1 and from left to right

(a) ϕ = π
4 , (b) ϕ = π

3 , (c) ϕ = π
2 and (d) ϕ = 3π

4

for fixed values of r = 1, δ = 0.25 and ω = 0.5. For example in Fig. 4a we exhibit the be-
havior of both quadratures Fx and Fy when ϕ = π/4. As one can see the phenomenon of
squeezing is observed in both quadratures where Fx is slightly decreasing its value to show
squeezing after onset of the interaction. However, the function backs again to increase its
value and the phenomenon of squeezing disappeared from the rest of the time. On the other
hand the quadrature Fy starts to show squeezing after a long period of the time compare
with the first quadrature Fx. It has also noted that the maximum squeezing is occurred in
the quadrature Fy around −0.75 at the time t ∼ 1.7. When we consider the case in which
ϕ = π/3 similar behavior to that of ϕ = π/4 can be reported. However, both quadratures
are slightly shifted and the amount of squeezing in the first quadrature Fx decreases while
the amount of squeezing in the second quadrature Fy increases, see Fig. 4b. For the case in
which ϕ = π/2 the same behavior can be seen as in the last two cases. For instance more
reduction in the amount of squeezing can be observed in the first quadrature Fx compare
with the previous case. This is corresponding to increasing in the amount of squeezing in
the second quadrature Fy , see Fig. 4c. When we examine the case in which ϕ = 3π/4, the
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Fig. 4 Fx (dash line) and Fy (solid line) against the time t with δ = 0.25, ω = 0.5, r = 1 and from left to

right (a) ϕ = π
4 , (b) ϕ = π

3 , (c) ϕ = π
2 and (d) ϕ = 3π

4

phenomenon of squeezing is observed in the second quadrature Fy for a long period of the
time while the squeezing entirely disappeared from the first quadrature Fx. Also it is noted
that the maximum squeezing in this case occurs at the time t ∼ 0.9 faster than that all the
previous cases, see Fig. 4d. Thus from the previous analysis we can conclude that for the
under critical damping case the system shown squeezing with periodic exchange between
the quadrature variances. However, for the overcritical damping case the squeezing is also
observed in both quadratures but without periodicity, which in fact reflects the nature of this
case.

Here we emphasis that the maximum squeezing is occurred in the first quadrature for the
undercritical damping case and in the second quadrature for the overcritical damping case.
Finally we would like to point out that although the uncertainty principal (5.12) is always
satisfied for all cases, however, the variation in the phase leads to the variation in its behav-
ior. This can be realized from Fig. 5a, b, c, d where we have considered the undercritical
damping case and plotted the functions Qi, i = 1,2,3,4 (corresponding to different values
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Fig. 5 Qi, i = 1,2,3,4 against the time t with δ = 50, ω = 0.5, r = 1, where (a) Q1 corrponds to ϕ = π
4 ,

(b) Q2 corrponds to ϕ = π
3 , (c) Q3 corrponds to ϕ = π

2 , (d) Q4 corrponds to ϕ = 3π
4

of the phase)

Qi = 〈(�K̂x)
2〉〈(�K̂y)

2〉 − 1

4

∣∣〈K̂z〉
∣∣2

, i = 1,2,3,4 (5.20)

against the time t , for fixed value of the other parameters. In the first figure, for ϕ = π/4
and π/3 we can see a regular fluctuations in the two functions with a slight shifting between
them. However, for ϕ = π/2 and 3π/4 we can also see regular fluctuations but with an
exchange between the two functions, see Fig. 5c, d.

6 Conclusion

In the previous sections of the present paper we introduced an alternative model of the
damped harmonic oscillator. The system is considered under the influence of an external
driving force. We dealt with the problem from quantum mechanics point of view where the
wave function for both number and coherent states are obtained. The linear and quadratic
invariants are also considered and two classes from each type is introduced. The eigenvalues
and the corresponding eigenfunctions are calculated for both number and coherent states
representation. Finally we treated the system from SU(1,1) Lie Algebra point view where
the Caismir operators are used to discuss the phenomenon of squeezing. It has been shown
that the phase angle of Perelomov SU(1,1) coherent state plays the crucial rule of control-
ling this phenomenon.
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of the research centre.

References

1. Caldirola, P.: Nuovo Cimento 18, 393 (1941)



2776 Int J Theor Phys (2009) 48: 2757–2776

2. Caldirola, P.: Nuovo Cimento B 77, 241 (1983)
3. Remaud, B., Hernandez, E.: J. Phys. A, Math. Gen. 13, 2013 (1980)
4. Colegrave, R.K., Abdalla, M.S.: Opt. Acta 28, 495 (1981)
5. Colegrave, R.K., Abdalla, M.S.: J. Phys. A, Math. Gen. 14, 2267 (1981)
6. Colegrave, R.K., Abdalla, M.S.: J. Phys. A 15, 1549 (1982)
7. Dodonov, V.V., Manko, V.I.: Phys. Rev. A 20, 550 (1979); and the references therein
8. Leach, P.G.L.: J. Phys. A, Math. Gen. 16, 3261–3269 (1983)
9. Gzyl, H.: Phys. Rev. A 27, 2297 (1983)

10. Abdalla, M.S., Colegrave, R.K.: Phys. Rev. A (1985)
11. Abdalla, M.S.: Phys. Rev. A 33, 2870 (1986)
12. Abdalla, M.S.: Phys. Rev. A 34, 4598 (1986)
13. Caves, C.M., Schumaker, B.L.: Phys. Rev. A 31, 3068 (1985)
14. Schumaker, B.L.: Phys. Rep. 135, 317 (1986)
15. Abdalla, M.S., El-Orany, F.A.A., Perina, J.: IL-Nuovo Cimento B 116, 137 (2001)
16. Gerry, C.C., Welch, R.R.: J. Opt. Soc. Am. B 8, 868 (1991)
17. Gerry, C.C.: Phys. Rev. A 37, 2683 (1988)
18. Gerry, C.C.: J. Opt. Soc. Am. B 8, 685 (1991)
19. Mostafazadeh, A.: J. Phys. A, Math. Gen. 31, 6495 (1998)
20. Ban, M.: J. Math. Phys. 33, 3213 (1992)
21. Ban, M.: Found. Phys. Lett. 5, 297 (1992)
22. Ban, M.: Opt. Soc. Am. B 10, 1347 (1993)
23. Abdalla, M.S., Colegrave, R.K.: Lett. Nuovo Cimento 39, 373 (1984)
24. Abdalla, M.S.: Lett. Nuovo Cimento 44, 482 (1985)
25. Abdalla, M.S., Al-Gwaiz, M.A.: IL Nuovo Cimento B 105, 401 (1990)
26. Abdalla, M.S., Colegrave, R.K.: Phys. Rev. A 32, 1958 (1985)
27. Abdalla, M.S., Colegrave, R.K., Khosravi, A.: IL Nuovo Cimento B 93, 195 (1986)
28. Abdalla, M.S., Nassar, M.M.: Ann. Phys. 324, 637 (2009)
29. Lewis, Jr. H.R.: J. Math. Phys. 9, 1976 (1968)
30. Lewis, Jr. H.R.: Phys. Rev. Lett. 18, 510 (1967)
31. Lewis, Jr. H.R.: Phys. Rev. Lett. 18, 636 (1967)
32. Colegrave, R.K., Abdalla, M.S.: J. Phys. A, Math. Gen. 16, 3805 (1983)
33. Colegrave, R.K., Abdalla, M.S.: J. Phys. A, Math. Gen. 17, 1567 (1984)
34. Abdalla, M.S., Leach, P.L.G.: J. Phys. A, Math. Gen. 36, 12205 (2003)
35. Abdalla, M.S., Leach, P.L.G.: J. Phys. A, Math. Gen. 38, 881–893 (2005)
36. Abdalla, M.S., Leach, P.L.G.: Theor. Math. Phys. 159, 534 (2009)
37. Abdalla, M.S., Choi, J.-R.: Ann. Phys. 322, 2795 (2007)
38. Aravind, P.K.: J. Opt. Soc. Am. B 5, 1545 (1988)
39. Gerry, C.C., Welch, R.R.: J. Opt. Soc. Am. B 9, 290 (1992)
40. Perelomov, A.M.: Generalized Coherent States and Their Applications. Springer, Berlin (1985)
41. Ban, M.: J. Opt. Soc. Am. B 10, 1347 (1993); and references therein
42. Perelomov, A.M.: Commun. Math. Phys. 26, 222 (1972)
43. Perelomov, A.M.: Sov. Phys. Usp. 20, 703 (1977)
44. Arecchi, F.T., Courtens, E., Gilmore, R., Thomas, H.: Phys. Rev. A 6, 2211 (1972)
45. Radcliffe, J.M.: J. Phys. A 4, 313 (1971)
46. Ban, M.: J. Math. Phys. 33, 3213 (1992)
47. Ban, M.: Found. Phys. Lett. 5, 297 (1992)
48. Prasad, S., Scully, M.O., Martienssen, W.: Opt. Commun. 62, 139 (1987)
49. Huttner, B., Ben-Aryeh, Y.: Phys. Rev. A 38, 204 (1988)
50. Campos, R.A., Saleh, B.E., Teich, M.C.: Phys. Rev. A 40, 1371 (1989)
51. Yurke, B., McCall, S.L., Klauder, J.R.: Phys. Rev. A 33, 4033 (1986)
52. Abdalla, M.S., El-Orany, F.A.A., Perina, J.: Acta Phys. Slovaca 50, 613 (2000)
53. El-Orany, F.A.A., Hassan, S.S., Abdalla, M.S.: J. Opt. B, Quantum Semiclass. 5, 396 (2003)
54. Wodkiewicz, K., Eberly, J.H.: J. Opt. Soc. Am. B 2, 458 (1985)
55. Yuen, H.P.: Phys. Rev. A 13, 2226 (1976)


	An Alternative Model of the Damped Harmonic Oscillator Under the Influence of External Force
	Abstract
	Introduction
	The Wave Function
	Schrödinger Picture
	The coherent state representation

	The Diagonalized Hamiltonian
	Constants of the Motion
	Linear Invariants
	Quadratic Invariants
	The Eigenfunctions of the Invariants


	Application of SU(1,1) Casimir Operator
	Casimir Operator and Nonclassical Properties
	Squeezing Phenomenon
	Evolution of the Squeezing in the PCS


	Conclusion
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


